
Magnetorotational Instability in a Couette Flow
of Plasma

Koichi Noguchi
�

and Vladimir I. Pariev†

�
Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

†Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA and
Lebedev Physical Institute, Leninsky Prospect 53, Moscow 119991, Russia

Abstract. All experiments, which have been proposed so far to model the magnetorotational
instability (MRI) in the laboratory, involve a Couette flow of liquid metals in a rotating annulus.
All liquid metals have small magnetic Prandtl numbers, Pm � 10

� 6, the ratio of kinematic viscosity
to magnetic diffusivity. With plasmas both large and small Pm are achievable by varying the
temperature and the density of plasma. Compressibility and fast rotation of the plasma result in
radial stratification of the equilibrium plasma density. Evolution of perturbations in radially stratified
viscous and resistive plasma permeated by an axial uniform magnetic field is considered. The
differential rotation of the plasma is induced by the E � B drift in applied radial electric field. Global
unstable eigenmodes are calculated by our newly developed matrix code. The plasma is shown to
be MRI unstable for parameters easily achievable in experimental setup.

INTRODUCTION

A central problem in the theory of accretion disks in astrophysics is understanding the
fundamental mechanism of angular momentum transfer. A robust anomalous outward
angular momentum transport must operate in order for accretion to occur [1]. A phe-
nomenological theory of turbulent angular momentum transport (α-disks) proposed by
Shakura [2] was in the basis of our understanding of how accretion occurs and still re-
mains viable to date. The puzzle of the origin of turbulence in hydrodynamically stable
disks was resolved when magnetorotational instability (MRI), originally discovered in
Refs. [3] and [4], was applied to accretion disks by Balbus and Hawley [5]. MRI causes
MHD turbulence to develop in an initially weakly magnetized fluid.

Despite its importance, MRI has never been observed in the laboratory. Recently,
two experiments have been proposed to test MRI in a differentially rotating flow of
liquid metal (Couette flow) between two rotating cylinders [6, 7]. A great deal of
theoretical work on investigating MRI in Couette flow of liquid metals has been done
confirming that MRI can be excited for magnetic Reynolds number, Rm, exceeding a
few [8, 9, 10, 11]. A particular attention was given to why MRI was not observed
in previous experiments with hydromagnetic Couette flows of liquid metals [8, 10].
Because of the very small magnetic Prantdl number of metals, Pm � 10

� 6, the rotation
needs to be very fast to achieve Rm � 1. Indeed, kinetic Reynolds number needs to
exceed Re � Rm

	
Pm � 106. In previous experiments the rotation speed was not high

enough to achieve Re � 106. For such high Reynolds numbers the flow in the experiment
is likely to become turbulent even without a magnetic field for Rayleigh stable rotation



profiles. The instability may have a nonlinear hydrodynamic nature [12] or may be due
to the Ekman circulation induced by the end plates [7]. The presence of such turbulence
can affect the conditions for the excitation of MRI [7].

Here we consider plasma as alternative to liquid metals to use in MRI experiment. By
changing temperature and density of the plasma by a few times around values T � 5eV
and n � 1014 cm

� 3 one can vary Pm in the range of about 10
� 2 to 102. For velocities

of plasma of the order of the thermal speed of ions and the typical size of the apparatus
of about 50cm Rm is in the range from 102 to 103, while Re is in the range from 5 to
104. These plasma parameters are readily achievable in the laboratory [13]. Therefore,
in plasma experiment it can be relatively easy to have high enough Rm allowing for
MRI to grow, while keeping Re modest and the flow laminar. Laminar character of the
flow can allow a detailed study of the structure of the unstable mode and the secondary
flow without intervening noise from turbulence. For higher Re � 104, the transition from
laminar to turbulent flows in hydromagnetics can be investigated. Moreover, the effects
of wide variations of Pm can be studied with a plasma MRI experiment.

DESCRIPTION OF THE EXPERIMENT

The basic setup of possible plasma MRI experiment is illustrated in Fig. 1. This experi-
ment is now under construction at Los Alamos National Laboratory. It can be also used
for observing laminar plasma dynamos [13]. Tentative set of specifications and typical
parameters of plasma for that experiment is shown in Table 1. The plasma is produced
by the electric discharge in hydrogen and is injected into the space between two coaxial
conducting cylinders. Mean free path for Coulomb collisions is much smaller than the
radii of the cylinders, and MHD description of plasma is appropriate. Cylindrical coor-
dinate system r, φ , z is used with the axis of symmetry coinciding with the central axis
of the cylinders. Axial uniform magnetic field B0z is produced by the coils around the
cylinders and is preexistent of the discharge. Therefore, plasma is coupled to the axial
magnetic field lines already at the formation and can slide along the axial magnetic field
lines filling the space between two cylinders. The outer cylinder is grounded and the
voltage Φ0 is applied to the inner cylinder during and after the plasma injection, in order
to maintain the rotation. Neglecting the boundary and sheath modification of any applied
electric field, plasma rotates with E � B drift,

E0 �
Φ0

ln
�
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R1 �

1
r

er ��� V0 � B0

c � (1)

where E0 is the equilibrium electric field, B0 � B0zez is the equilibrium axial magnetic
field, R1 is the radius of the inner cylinder, R2 is the radius of the outer cylinder, and c is
the speed of light.

Since plasma is highly collisional and is thermalized before it reaches to the experi-
mental region of the chamber, we further make an assumption that the stationary state is
isothermal:
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FIGURE 1. The meridional cross section of the device. Center line of the chamber is shown as a
dashed line. Dotted line indicates the boundary of the working space between two cylinders (to the right).
Plasma is injected from the left and rotates due to E � B drift. Axial magnetic field is produced by coils.
Coaxial metal rings at the right end plate are charged to fractions of Φ 0 (Φ0 � 0 as illustrated) to support
differential rotation of plasma against the formation of Ekman layer.

where P0

�
r � is the equilibrium pressure, ρ0

�
r � is the equilibrium density, Cs is the sound

speed, and Γ is the ratio of specific heats (Γ � 5
	
3 for hydrogen).

The Larmor radius of electrons in the experiment is also much smaller than the radii
of the cylinders, but is comparable to the Coulomb mean free path. Despite this, here
we assume for simplicity that the conductivity of the plasma is isotropic and is given
by non-magnetized expression. The coefficient of magnetic diffusivity, η , and dynamic
viscosity coefficient ρν are independent of density and depends only on temperature.
Then, η and ρν remain constant throughout the volume of the plasma in the isothermal
approximation considered here.

In the equilibrium state of the steady rotation the magnetic field is B0z � constant and
the velocity is V0 �

�
0 � rΩ

�
r � � 0 � , with the angular velocity profile

Ω
�
r � � � Φ0

B0z ln
�
R2

	
R1 �

c
r2 � (3)

Balance between the centrifugal force and the gradient of pressure in the equilibrium
state is

� rΩ2ρ0 � � dP0

dr � (4)

Using isothermal condition, Eq. (4) can be solved to give the radial dependence of ρ0

ρ0 � ρ0

�
R1 � exp

���
r

R1

rΓΩ2

C2
s

dr � . (5)

When the rotation speed Ω
�
R1 � R1 is comparable to the sound speed, the centrifugal force

is significant enough to cause the compression of the plasma toward the outer cylinder.



TABLE 1. Parameters of the plasma.

Inner Radius r1 (cm) 15
Outer Radius r2 (cm) 52

Length L (cm) 100
Density n (cm

� 3) 1 � 1014

Electron Temperature Te (eV) 5
Kinematic Viscosity, ν (cm2 s

� 1) 3 � 106

Magnetic Diffusivity, η (cm2 s
� 1) 2 � 7 � 105

Prandtl number Pm 11
Sound Speed Cs (cms

� 1) 4 � 106

Maximum Frequency Ω1max (s
� 1) 1 � 9 � 105

THE INSTABILITY IN A RADIALLY STRATIFIED PLASMA

We consider perturbations of the equilibrium state described above: V � V0
�

v, B �
B0

�
b, ρ � ρ0

� ρ1, P � P0
�

P1, and linearize MHD equations in small perturbations.
We idealize the problem by considering cylinders of infinite length and take the de-
pendence of perturbations on t, θ , and z as ∝ exp � i � � ωt

�
mθ �

kzz ��� . If the equilibrium
density ρ0

�
r � varies significantly between R1 and R2, general perturbations of the plasma

are compressible. However, the phenomenon of MRI is due to the stretching of the mag-
netic field lines by the differential rotation coupled with the action of centrifugal force.
Boussinesq approximation neglects the changes of the volume of the displaced parcel of
plasma as it gets quickly adjusted to the new pressure equilibrium at a new radial loca-
tion in the stratified plasma. It allows to capture centrifugal force acting on a displaced
parcel of plasma but excludes compressible modes, which are not essential for the de-
velopment of MRI. This simplifies calculations substantially. Here we adopt Boussinesq
approximation. Linearized continuity equation becomes equivalent to two equations:

∂ρ1

∂ t
� �

V0∇ � ρ1
�

v � ∇ρ0 � 0, (6)

∇ � v � 0. (7)

Other linearized MHD equations are:

∇ � b � 0, (8)
∂b
∂ t

� ∇ � � v � B0 � � ∇ � � V0 � b � � η∇2b, (9)

ρ0
∂v
∂ t

� ρ0

�
v∇ � V0

� ρ0

�
V0∇ � v � ρ1

�
V0∇ � V0 � � ∇P1

� ρ0ν0∇2v

� 1
4π

∇
�
B0zbz � � 1

4π
�
b∇ � B0

� 1
4π
�
B0∇ � b, (10)

where ν0 is the unperturbed value of kinematic viscosity. Note, that ρν � ρ0ν0, so that
the viscosity coefficient ρν remains unperturbed. The following reductions are done.
First, we note that any solution of Eq. (9) satisfies Eq. (8) automatically. This means
that out of four equations provided by (8) and (9) together, one should be omitted. We
choose to omit z-component of Eq. (9) and use Eq. (8) to express bz via br and bθ in
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FIGURE 2. Growth rate, Imω � Ω1, of the unstable m � 0, kz � π � L mode as a function of Ω1 and B0z

the r and θ components of Eq. (9) as well as in all components of Eq. (10). We also use
Eq. (7) to express vz via vr and vθ . Eq. (6) is used to express ρ1 via vr and substitute
into momentum Eq. (10). As for Eq. (10) we replace its z-component by the equation
obtained by taking the divergence of Eq. (10). Using Eqs. (8) and (7) the divergence of
Eq. (10) can be reduced to the equation with the only second order radial derivative being
the ∂ 2Π

	
∂ r2, where Π � P1

�
B0zbz

	 �
4π � is the perturbation of the total pressure. In

summary, we obtain five second order linear differential equations in r for five variables,
Π, br, bθ , vr, and vθ : the divergence of Eq. (10), r and θ components of induction Eq. (9),
and r and θ components of momentum Eq. (10)

An ideal conductor boundary is a good approximation, since η for metallic walls is� 800cm2 s
� 1, which is always much smaller than that of plasma, so even a thin metallic

wall can be considered as a good conductor. Boundary conditions for conducting walls
are given by br � 0, dbθ

	
dr

�
bθ

	
r � 0, vr � 0, vθ � 0, dvr

	
dr � 0 at both r � R1 and

R2.
We discretize the equations and boundary conditions on a uniform grid in rescaled

variable x � ln
�
r

	
R1 � with N � 200 grid points. The problem is reduced to finding

values of ω such that the determinant of the matrix 5N � 5N is zero. We calculate the
determinant by using LU-decomposition and search for zeros by using Newton iteration
method. After an eigenvalue of ω is found, the corresponding eigenfunction is calculated
by using back substitution.

We find m � 0 axisymmetric unstable mode in a wide range of parameters achiev-
able in the experiment. Let us focus on one case with fixed temperature and density
given in Table 1. Then, Cs

�
T � and Pm

�
ρ � T � are also fixed. The remaining parameters,

which can be adjusted in the experiment, are Φ0 and B0z. For angular velocity profile (3)
the value of Φ0 is uniquely related to the value of Ω1 � Ω

�
R1 � . The velocity of the



plasma should be subsonic everywhere for Boussinesq approximation to be a reasonable
approximation. At supersonic speeds, plasma is pushed close to the outer wall leaving
very rarefied region in the bulk between cylinders. In this case, it is more appropriate
to discuss buoyant or Parker instabilities than MRI. The velocity of rotation is maxi-
mum near the inner cylinder, therefore, our calculations are valid for Ω1R1

� Cs. The
maximum value Ω1max � Cs

	
R1 is given in Table 1.

We plotted the MRI growth rate Im
�
ω �

	
Ω1 for m � 0, kz � π

	
L mode in Fig. 2. We

also searched for the unstable non-axisymmetric modes, but did not find any. In a small
region to the right in Fig. 2 with small contour separation the mode is purely growing
(Re
�
ω � � 0), in the rest of the unstable region the mode is growing and oscillating

(Re
�
ω � � 0). The MRI is absent for weak magnetic fields (vAz

	
Cs � 10

� 2) and small
wave numbers (kzL

� 2π) because driving force from magnetic field is too weak to
overcome the viscosity and diffusivity. The MRI is also suppressed in high magnetic
field region due to magnetic tension. For a given magnetic field, only finite number of
modes in the kz direction will be excited.

The drawback of using plasmas is limited time available before plasma recombines
enough to significantly reduce its coupling with the magnetic field. During the confine-
ment time of the order of 10

� 3 s initial perturbations grow by � 10 times, and can be
registered experimentally. This confinment time is within the range of planned experi-
ment.
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